八宝书库 > 科幻未来电子书 > 光速战争 >

第9部分

光速战争-第9部分

小说: 光速战争 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



移”效应。恒星光谱中会有一些暗线,这是光源发出的光线中,由于某些类型的元素被吸收而产生的吸收线。星系远离我们的速度越快,其波长的拉升程度越明显,在光谱中的表现便偏向红端,被称作红移。那么基于哈勃定律,可以发现,星系距离我们越远,它们光谱中表现出的红移量也会越大。目前接收到红移最大的电磁波信号显示其来自138亿光年之外。换句话说,这是目前人类能够观察到的最古老的光线,这也在一定程度上透露了宇宙本身的年龄。在过去的138亿年间,宇宙一直在持续膨胀——并且膨胀的速度非常迅速。将这一因素纳入考虑之后,天文学家们的计算结果显示,那些从138亿光年外发出的光线,产生这些光线的古老天体,由于宇宙的膨胀,今天它们和我们之间的距离已经达到了大约465亿光年左右。这一数值是目前对于可观测宇宙半径的最佳估算。将这一数值乘上一倍,就能获得可观测宇宙的直径,大约是930亿光年。2016年左右,牛津大学的米汉。瓦达扬和同事们,对可观测宇宙中的已知天体数据进行了分析,试图从中探寻整个宇宙的真实形态。在使用计算机算法对数据中有意义的模式进行挖掘之后,他们得到一个新的估算值。计算结果显示整个宇宙的大小大约是可观测宇宙的250倍左右。

  不管可观测宇宙有多大,这些数据都是基于光速恒定为基础的,但是基于光速壁垒的存在,所以人类观测需要重新认识,需要新的理论支撑。

  第二份报告,就是文明院士提出的光速定律报告。以下是主要内容。

  光速四定律:

  定理1:对于一个孤立系统空间域的物质,如果该系统没有和其它系统进行能量和物质交换,则该孤立系统空间域的物质光速取决于该系统空间域的能量密度(成正比)和物质密度(成反比);

  定理2:类似于地球人类热力学第二定律的“熵增原理”,光速存在“光降原理”,即在一个孤立系统空间域内,光速会随时间单调下降;

  定理3:如果两个孤立系统空间域中物质的光速相同,则它们彼此也必定处于同一时间轴上;

  定理4:对于一个系统三维空间域,C^2=k*ΨE/Ψm ,C为该系统三维空间域的物质光速,ΨE为该系统三维空间域的能量密度,Ψm为该系统三维空间域的物质密度,ΨE/Ψm 定义为密度波,k为该系统三维空间域与其它三维空间域的能量和物质交换程度,即交互因子,对于一个孤立系统的三维空间域,k=1。

  光速四定律设定,前提是大爆炸产生了我们这个宇宙。大爆炸之初,物质只能以中子、质子、电子、光子和中微子等基本粒子形态存在。随着温度降低、冷却,逐步形成原子、原子核、分子,并复合成为通常的气体。气体逐渐凝聚成星云,星云进一步形成各种各样的恒星和星系,最终形成我们如今所看到的宇宙。

  宇宙在致密炽热的奇点时,具有极高极高的能量。由于能量密度极高,而物质密度极小,所以宇宙的初始膨胀是超光速进行的。宇宙爆炸之后,宇宙体系在不断地膨胀,能量密度不断下降,能量不断创造物质,物质密度不断增加,这是一个能量密度由大到小、物质密度从稀到密的演化,所以本宇宙的本征光速是随时间单调下降的。

  如果将本宇宙看作是一个孤立的系统,那么光速定律1、2、3这三条成立。如果还存在其它宇宙,则光速定理4保证有效性。将一个宇宙或多个宇宙情况推演到一个或多个系统空间域(即下面推论所说的光速位面空间,或者光速空间域),光速四定律同样适用。

  注:宇宙光速称为本征光速,不同空间区域的光速称为空间域(或空间域物质的)光速,因为宇宙本征光速是随时间单调下降的,所以宇宙中所有空间域光速都是随时间单调下降的。

  基于宇宙大爆炸学说和光速四定律,可以得出一些有意思的推论:

  宇宙由于膨胀,对所有空间来说,最终会达到一种光速绝对的平衡(密度波为非零常数),或者光速随时间降为零(密度波为零),宇宙最终死寂或死亡;

  由于能量和物质基本粒子是以量子(态)为基数的,所以宇宙本征光速随时间的下降变化并不是严格意义上保持连续性,而是界变跳跃的,就像原子能级一样,存在光速位面,据此可以将本宇宙分为不同的光速空间区域(光速空间域);

  光速位面对光速具有“过滤截频”的作用,也就是说,假如一束光从光速空间区域A以光速c1到达光速空间区域B,其光速被过滤并截频,变化为光速空间区域B的光速c2。

  对于两个不同光速位面之间的空间区域(真空域),假如光速存在变化且变化是连续的,则这两个真空域之间存在非正常空间(异空间,比如空间褶皱)或外来物质(比如存在大质量物体介入);

  如果两个空间域的本征光速相同,则这两个空间域的时间相对于宇宙大爆炸时间是相同的,也就是说,处于同一个光速位面的世界,其时间是相同的;

  假如某个高级文明能进行超光速航行,想返回到过去,或者说,从较低光速位面世界超光速跳跃到较高光速位面世界,则由于推论第四条,至少一个光速位面空间(世界)或者跳跃者本身将会发生变化,这个光速位面世界的事件走向或者跳跃者本身的变化,取决于跳跃的影响程度和大小,所以超光速一般选择在真空域开始,然后跳跃到另一个真空域,这样避免超光速跳跃影响其中一个光速位面世界或者跳跃者本身;

  使一个空间域光速加速下降(或者毁灭这个位面世界)的办法,可以采取抽能方式(将光速位面空间域的部分能量或者全部能量排到真空域当中),也可以采取填物方式(将外界大量物质填充到这个位面世界);

  黑洞是一个极高密度波的地方,所以黑洞是一种超距离航行通道(这种超距离航行有变相的超光速效果)。我们可以利用天然黑洞或者人造黑洞进行超距离航行,至于超距离航行的距离(到达后所处的光速位面空间,不管是高光速位面空间还是低光速位面空间)和所处的时间轴位置,则取决于这个黑洞的性质和密度波大小;

  经典理论认为宇宙是各向同性的,认为物质在大尺度的宇宙空间中是均匀分布的,但是,根据推论第一条,只有当宇宙本征光速达到一个恒定常数时,宇宙才是各向同性,那时物质才是均匀分布。现今的宇宙,是各向异性的,本征光速越小的位面区域,它的密度波越小,也就是说,其位面区域的物质密度越大,反之亦然成立。

  相对论认为:光速与观测者相对于光源的运动速度无关,即相对于光源静止和运动的惯性系中测到的光速是相同的,光速与任何速度叠加,得到的仍然是光速。速度的合成不遵从经典力学的法则,而遵从相对论的速度合成法则。其实,根据本报告光速四定律,其推论是对于处于同一个光速位面区域的物体,速度的合成遵守相对论的速度合成法则,而对于不同光速位面区域的物体,速度的合成遵守经典力学的法则。

  能量守恒定律仍然适用,每个光子具备一样的能量,光子的能量只和频率相关,这说明频率不变,又因为光的颜色和频率相关,所以颜色也不变。光速是频率乘以波长,光速降低,频率不变,那么只能是波长变短了。由于光速降低,波长变短,在这个太阳系光速壁垒中,我们看到的可见光谱区域要整体偏大,也就是说,在光速壁垒外面的可见光,我们“看不到”。当我们突破光速壁垒,进入更快光速位面空间后,由于波长变长,在更快光速位面空间里,我们看到的可见光谱区域要整体偏小,也就是说,在光速壁垒里我们看不到的光,在更快光速位面空间里会被“看到”为赤橙黄绿青蓝紫。

  周源看了这个报告,费了不少时间和精力去理解,毕竟这是一个划时代的理论,比爱因斯坦的相对论都毫不逊色啊。


第14章:星系标定


  周源拿起第三个报告阅读,星系标定方法,主要作者:科学院天文学家莱尔和科学院物理学家文明。

  整个报告分为三大部分。第一部分回溯宇宙大小、星系距离是如何测量的,第二部分介绍新理论模型和测量方法,第三部分建议总结等。

  第一部分是总结以前测量方法。

  除了利用红移效应(多普勒效应)对极端遥远的天体进行测距外,还有一些方法。

  射电望远镜测量:比如一个恒星系内,行星到卫星、行星到行星的距离,直接向近距离的行星或卫星表面发射无线电波并接收反射信号,比如金星和火星,并测量信号往返所需要的时间,这可以给出非常精确的距离数值。但使用射电望远镜测量太阳系之外天体的距离,则显得有些不切实际了。

  三角视差法:在一年中的某个时间,测试者用望远镜测定一颗恒星在天空中的位置,比如说在1月份进行这样的测定。然后等上几个月(一般半年)的时间,随后在7月份对同一颗恒星进行同样的测定,此时测试者正处于地球轨道上太阳的另一侧。当测试者在冬天和夏天观察恒星时,就能够利用它们相对于遥远宇宙背景上的位置变化来测算其距离。然而,这一方法也有其自身的局限性,那就是当恒星的距离太过遥远——大约100光年以外,此时这些恒星所显示出的视差值就太小了,无法进行有意义的计算。

  中子星回声:中子星释放出巨大的X射线爆发,它产生的回声——当X射线从星际空间里的尘埃云里反射时就会产生回声——为天文学家产生了令人惊讶的新计量尺。天文学里的距离测量非常困难,尤其是类似CircinusX…1的源,后者隐藏在厚厚一层尘埃背后的银面上,这使得利用光学望远镜观测它们几乎不可能。人类首次利用阻碍视线的尘埃,来创造估计与X射线源距离的新方法。当X射线遇到星际空间里的尘埃颗粒就会发生偏离,如果尘埃云足够密集,它们导致部分X射线从原始路径上散射开来,进入三角形的新路径,而非直线路径,这样它们到达地球的时间,比那些未被散射的X射线到达地球的时间要更长。

  主序拟合法:这一方法背后的基本前提是,人们认为那些质量相似、年龄相仿的恒星,如果它们的距离相同,那么它们的亮度也应该是一样的。但事实是,这些恒星看上去都是不一样亮的,这也就意味着它们的距离远近不同。有一件事是肯定的,那就是随着时间推移,这些恒星的颜色会逐渐变得更红。通过对这些恒星颜色和亮度的精确测定,并将这些恒星与那些距离较近、已经运用视差方法测定过距离的主序星进行对比,通过这种方法,能够大大延伸宇宙测量标尺,从而得以估算遥远的多的恒星的距离。

  造父变星和宇宙标准烛光:概括的说,就是造父变星的光变周期与其光度之间存在关联,且其光变周期越长,光度越大。换句话说,相比那些较为暗弱的造父变星,那些明亮的造父变星“脉动”的周期更长(一般光变周期可以长达数天)。因为天文学家们可以相对容易地测定光变周期,这样他们也就能够得到这颗恒星的真实亮度数据。于是,反过来,只要观察一颗造父变星的亮度,就能够计算出它们的实际距离。天体物理学家们断定所有的Ia型超新星的亮度都是基本相同的。这样一来,就像造父变星一样,只要观察它们的亮度,便可以直接得到它们的距离数值了。也因为以上的原因,Ia型超新星和造父变星,都被天文学家们亲切地称作宇宙中的“标准烛光”。

  第二部分介绍新理论模型和测量方法。

  以前所有测量方法是基于宇宙膨胀和光速不变这两个铁律。如今,事实上,根据文明院士的光速四定律及其推论,由于宇宙本征光速下降,宇宙空间存在多个光速位面空间以及不同光速位面的“过滤截频”效应,所以需要提出一种新理论和测量方法。

  首先我们提出一个宇宙光速位面的静态模型,想象一下。

  一个非常巨大的空心玻璃球A(里面介质是空气),A里面有一个巨大的空心玻璃球B(里面介质是水)和很多很多萤火虫(在A内,在B外),B里面有一个大的空心玻璃球C(里面介质是汽油)和许多萤火虫(在B内,在C外),C里面有一个大的空心玻璃球D(里面介质是柴油)和不少萤火虫(在C内,在D外),D里面有一个小的实心玻璃球E和少量萤火虫(在D内,在E外),E球里面被困了一种萤火虫,动不了。

  抽象一下,假如ABCD空心玻璃球和E实心球的球面是无形无质的,相当于光速位面。每个玻璃球界面附近都有一个真空域,没有任何介质。现在进行动态建模。

  所有的空心玻璃球ABCD都在向外膨胀且都在运动着(假设各个球里面介质也是满的),E球没有膨胀,但也在向D球面运动。除了E内被困的萤火虫,所有的萤火虫,都向自己所在的球面方向以玻璃球膨胀速度运动着。那么,E球里面被困的这只萤火虫怎么知道其它各个同伴的距离?这个同伴最近的就是位于D球内的,最远就是位于A球内的。

  由于宇宙本征光速是在单调下降,所以实际上各个空心玻璃球向外膨胀和萤火虫同伴向各自球面的快速运动都是做减速运动。

  这就是我们突破“光速壁垒”后所要面临的问题,由于各个球内介质不一样,所以光速传播速度不一样,从A球到E球,光速是依次逐渐减速的(因为里面介质密度逐渐增大),在E球内那个被困的萤火虫看来,所有的萤火虫同伴都在远离自己。

  这个模型只是一种形象的比喻。下面进行萤火虫同伴定位和距离判断。

  E球内被困的萤火虫首先需要做出下面几个步骤:

  将E球打碎,突破实心玻璃屏障,和D球内的同伴处于同一个光速区域。在D球区域内,D球内光速是

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的