八宝书库 > 军事历史电子书 > 神舟:载人航天的故事 >

第6部分

神舟:载人航天的故事-第6部分

小说: 神舟:载人航天的故事 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



程序立即旋转,使火箭从垂直角度稍微倾斜,但基本还是垂直向上飞行的。一开始火箭的加速过程也并不是十分的明显,因为第一级推进剂还在,火箭的重量依然大的惊人。在上一级推进剂烧完时,重力使火箭缓慢地从微倾斜角度转入水平方向的飞行。这一被称为重力转向的机动,帮助火箭逐渐将其能量从向上升入太空的推进,转向进入轨道速度所需的向前推进。
第一级推进剂烧完后,爆炸螺栓使其与火箭的其余部分分离,这时火箭卸掉了结构和推进剂的大部分质量。同时第二级火箭开始点火,继续加速飞行,因为火箭的重量大大的减轻,即使第二级的火箭产生的推力不如第一级的大,它的加速也要比以前的快很多。此时,已飞行2~3分钟,在高度达到150千米~200千米时,火箭基本已飞出稠密大气层,有效载荷不再需要整流罩来防护风力的破坏,按预定程序抛掉箭头整流罩,这进一步减轻了火箭发动机加速的质量负担。
有些火箭的二级推进剂,常常在火箭快接近轨道速度时燃烧完毕。爆炸螺栓使二级火箭与有效载荷分离,这时在有效载荷上,一个称作推进器的小火箭将火箭送入最终的轨道。同时二级推进器使火箭落入大气层上部,最终,空气摩擦会使它燃烧,变成灰烬。这样的处理方式,可以避免使其留在太空,成为太空垃圾。如果这些垃圾不巧进入某个卫星的轨道,那将是极大的威胁。
对于低轨道的航天器而言,这时火箭就完成了运送任务。但对于高度在1000千米以上的轨道或行星际任务,还需要有第三级火箭,在这一结构中,二级火箭担当着把三级和有效载荷送入近地轨道的工作,近地轨道通常为300千米或更低。在二级火箭脱离后,火箭在地球引力作用下,开始进入航天技术中称为惯性飞行段的过程,一直到与预定轨道相切的位置。稍后,第三级火箭发动,进入最后加速段飞行,当加速到预定速度时,第三级火箭发动机关机,有效载荷从火箭运载器弹出,进入最后的、较高的轨道,或者前往另一行星的轨道。
目前使用的所有火箭,基本都是一次性使用的运载火箭。这是因为飞行的压力、发动机燃烧推进剂的酷热、抛弃后的重返地球以及在大气层上部的焚烧,都使得各种部件在一次飞行后就基本报废。虽然这样听起来很浪费,但建造可重复使用的火箭所需的费用并不比一次性使用火箭的低。不过经济上可以承受的设计——再循环式火箭已经在规划之中了。  
                  
 轨道动力学:圆形轨道与椭圆形轨道
 前面已经经常提到了“轨道”这个词,那么轨道是什么呢?我们知道地球总是围绕着太阳在做着公转运动,如果把每一时刻地球中心的位置用直线连起来,就出现一个椭圆形的轨迹,通常就把它称为轨道。事实上太空中运动的任何天体都有自己的运行轨道,科学家们经过不断观察与研究,建立了轨道动力学,为航天器在太空中的运动提供了理论基础。轨道动力学要经过严格的数学推导,这些推导决不是几页纸可以表述的,大多数人面对这些推导绝对都会望而却步,但你不用担心下面的内容你会看不懂,只要具备基本的几何学知识就足够理解这些内容。
圆形轨道与椭圆形轨道。 最好的txt下载网
假设你登上华山的东峰,站在朝阳台上,将一块石头水平抛出,会看到它迅速的朝山下坠去,你也许看到它砸在了峰下的某个地方,这时如果你再用力抛出另一块差不多大的石头,如果你还能看到它在山下的落点,那这次的落点一定是比刚才的落点远一些,因为你用了更大的力。
这基于一个事实,地心引力对物体产生向下的拉力,拉力使物体的运动状态发生变化。拉力产生的向下速度相同,因此两块石头从山上到山下的时间也一样。但用的力不同,石头在水平方向运动的速度也就不同,那么相同时间内,它们在水平方向的运动距离必然不同。
再看另一个事实,地球是圆的。在物体下落运动的距离中,地球表面也向下弯曲,那么实际的落点要比在水平面上的落点要远。如果可以让物体的速度足够大,在它朝地面下落1米时,地表亦向下弯曲了1米,它与地表的高度没有变化,这样它就永远不会落地,产生了与地球表面同心的圆形轨道。
保持轨道运动的能力取决于沿地表曲线向前运动的速度,该速度必须保证物体不至于落地才行。由于高度较高的物体比高度较低的物体受到的重力影响要小,因此高度增加时,保证圆形轨道的速度可以降低一些。
如果让物体获得更大速度,在下落1米的时间内,向前运动的距离足以达到地表向下弯曲了2米的地方,这样物体到地表的距离实际上增大了,即高度增加。继续运动则高度不断增加,但由于重力的作用,使上行的物体逐渐慢下来,绕地球半周后,高度最大。接下来物体与地球的高度开始减小,并继续绕地球运动。最后,球又回到原来的位置,恢复原有速度,又开始了一次原来的运动,这样就形成了椭圆轨道。
对椭圆轨道的理解符合我们一般的认识,可以想一想如果你朝空中扔一个石块,它在爬升时开始慢下来,在爬升到最高点时速度最慢,然后它冲向地面速度又开始回升。
椭圆轨道的速度
偏心率值近地点速度
0(圆形)轨道中各点速度相等
远地点速度的122%圆形的105%
远地点速度的186%圆形的114%
远地点速度的300%圆形的122%
远地点速度的567%圆形的130%
远地点速度的1900%圆形的138%
偏心率用来测量椭圆的形状,偏心率越大,椭圆就越扁。椭圆的偏心率在0…1之间,用焦点间距离除以长轴的长度可以算出偏心率。  
                  
 轨道动力学:开普勒定律
 1609年,开普勒通过对火星绕太阳旋转数据的整理,推导出太阳系中行星运动的三大定律,后来证明这三大定律适用于太空中任意二体系统的运动,如地球和月亮,地球和人造卫星等。
开普勒三大定律
1、每个行星在椭圆轨道上环绕太阳运动,而太阳在一个焦点上。
2、太阳和行星的矢径在相等的时间间隔中扫过相等的面积。
3、行星的轨道周期的平方与它的轨道的长轴的三次方成正比。
第一定律有关太空中天体运行轨道的形状。就像前面提到绕地球运动的物体,其运动轨迹为椭圆形,而圆形轨道只是一种特殊的椭圆轨道。在椭圆的长轴上具有两个虚拟的点,称为焦点。这两点距中心的距离相等,轨道上任意一点到两个焦点的距离之和等于长轴的长度。而地球的中心与其中的一个焦点重合。
在有关轨道的描绘中,经常提到地球的近地点和远地点两个词。近地点就是物体在椭圆轨道上到地面距离最短的那一点,远地点是椭圆轨道上到地面距离最长的一点。这两个点都在椭圆的长轴上,近地点在距地球中心较近的一端,远地点在较远的一端。还要注意一点轨道高度指的是物体到地表的距离,而不是物体到地心的距离。
近地点与远地点是对地球而言,对太阳还有近日点、远日点,对月球有近月点、远月点,其它星体有近星点、远星点
开普勒第二定律涉及到太空中物体的运动速度。假设轨道上运动的物体和地球中心有一弹性足够的绳子相连,那相同时间内绳子所扫过的面积是相等的。很显然因为近地点附近距地球中心的距离较短,在相同时间内要使它扫过面积与远地点相同,必然需要更长的轨道距离,运动速度必然要更快,所以近地点附近的速度比远地点附近要快。这与上一节的有关椭圆轨道形成的分析是一致的。
第三定律涉及轨道周期,即物体沿轨道运行一圈所用的时间。但在理解这句话时,要注意物体完成一个轨道周期不依轨道的形状来决定,而是由椭圆轨道的大小,即椭圆长轴决定,只要长轴长度相等,轨道周期相等。轨道周期之所以不同,在于轨道的运行速度不同。地球轨道周期
轨道高度周期
300千米1小时30分31秒
1000千米1小时45分07秒
10000千米5小时47分40秒
100000千米3天23小时54分  
                  
 轨道动力学:轨道的描述
 前面就轨道的形状及轨道中物体运动的讨论可以说是在平面内的讨论,这个平面就是轨道所在的平面,该平面可以称为轨道平面。为了进一步讨论轨道还需要了解轨道在太空运动的位置和方向,借助轨道平面可以帮助我们想象轨道是倾斜的还是旋转的、或是指向任何方向的。
就像平面上点位置的描述需要确立一个直角坐标系一样,在太空这个三维空间中也需要建立一个坐标系来知道轨道的位置。对地球轨道的描述,航天技术中通常采用地心赤道坐标系。该坐标系以地球中心为坐标原点,包括x、y、z轴。xy平面与赤道面为同一平面,x轴指向春分点,z轴的指向穿过北极。
春分点即在“春分”那天(一般在阳历3月20日左右)太阳所在点。天文学知识告诉我们,由于太阳以及月球引力的影响,春分点会沿着某一轨道移动,因此地心赤道坐标系x轴的指向也会发生变化,但这个变化非常之慢。我们讨论地心赤道坐标系时将x轴的指向定为指向2000年的春分点,在实际的轨道和航行计算中,技术人员要对这个坐标系进行修正。
坐标系固定之后就可以测量出轨道参数,最常用的轨道参数是一组经典轨道常数,即开普勒轨道常数,用来描述空间中物体的轨道。用这些常数可以递推出物体在过去或将来的位置。
轨道要素系列
常数用途
半长轴a确定轨道的大小
偏心率e定义轨道的形状
倾角i测量轨道倾斜度
升交点赤经Ω确定赤道交点
近地点幅角ω确定近地点
在历元时刻的真近点角υ0确定物体在轨道中的位置
第一个参数是半长轴,即轨道长轴的一半,确定了轨道的大小,用a来表示。第二个参数是偏心率,定义了轨道的形状,用e表示。e的大小在0到1之间,如果e等于0,轨道是圆形的。
下一个轨道要素测量了轨道平面相对于赤道平面的倾斜度,在赤道平面的轨道(赤道轨道)如果向北极或南极倾斜,则新轨道所在平面与赤道平面会产生一夹角,称为倾角,用符号i表示。在北极向下看,如果轨道的运动是逆时针运动的,则称之为顺行轨道,反之为逆行轨道。顺行轨道的倾角值在0o~90o之间,而逆行轨道的倾角值在90o~180o之间。当轨道上的物体飞越北极和南极时,轨道倾角值为90o,称为极地轨道。
轨道分类
类型 高度
低轨道LEO 距地面数百公里至5000千米运行周期为2~4小时
中轨道MEO 距地面5000~20000千米运行周期4~12小时
高轨道GEO 距地面35800千米运行周期24小时
100000千米 3天23小时54分
在顺行轨道运行的物体,绝大多数离地面较近,高度仅为数百公里,故又将其称为近地轨道。要把卫星或航天器送入这种轨道,运载火箭要朝东方向发射,这样能够利用地球自西向东自转的部分速度,从而可以节约火箭的能量。目前大多数卫星采用的都是这种轨道。而要把卫星或航天器送入逆行轨道运载火箭需要朝西方向发射,不仅无法利用地球自转的部分速度,而且还要付出额外能量克服地球自转。因此,一般都不利用这类轨道。
倾角不等于零的轨道与赤道平面有两个交点称为节点。如果轨道运动的物体经过节点时正从南往北运动,可以称为轨道平面内的升交点,另一个节点称为降交点。
第四个要素是升交点赤经,表示x轴与升交点间的逆时针角度,用Ω表示。第五个要素测量的是轨道平面内升交点到近地点的角度,称为近地点幅角,用符号ω表示。ω值在0o~180o之间说明近地点发生在赤道以北,180o~360o之间说明近地点发生在赤道以南。最后一个要素是在历元时刻的真近点角,指在指定时间由近地点到物体所在点的角度,用符号υ0表示。
轨道要素中前5个是几何要素,在理想状况下是不变的,提供了轨道的大小、形状和方向,第6个是时间要素,它总是在不停的变化着,它提供了物体在轨道上的具体位置。利用这6个要素我们就可以计算出轨道上的物体在坐标系中的位置,当然要真的利用它们来进行轨道计算还需要大量的工作。  
                  
 轨道动力学:轨道改变
 航天器在太空中沿着某一固定的轨道运动,实际任务中航天器往往需要在不同的轨道中运动来满足任务的需要。比如某一轨道上运行的卫星发生故障不能返回,另一轨道上的宇宙飞船要对它进行修理,要怎么办呢?你可能想到了公路上的一辆汽车,要从一个车道进入另一个车道,但情况不像在车内转动方向盘那么简单。太空中运动的物体要受到地球、月球或太阳等星体引力的作用,要直接克服这些引力在太空中进行机动,需要巨大的能量,相应的推进剂载荷就上升,而这往往是不经济的或不太可能实现的,所以可能的方法是消耗尽可能少的推进剂,利用星体的引力来完成机动。
根据牛顿力学原理,航天器要想实现轨道的改变,必须要有额外的推力,这个推力是由航天器上的推进器提供的,推进器就好像一个小型的火箭,通过改变航天器的飞行方向、速度来创造出一条新的轨道。轨道机动可以采用脉冲式推力,也可采用推力较小的连续或间断型推力,为了我们讨论方便,主要涉及的是脉冲式推力。
由于推进器从点火到关机会有一段时间,这段时间内航天器受到连续的推力,这就使变轨计算复杂化了,为了分析方便常做出这样的假设,所有的推力都是在瞬时发生的,这样虽然牺牲了准确性,但简化了计算,而且因为推力时间在整个轨道周期中所占的比重非常小,。 最好的txt下载网所以这个假设是可以接受的,称为脉冲推力假设。
圆形轨道上运动的物体,如果给它施加一个水平推力,这个推力有可能是正向的(增加前进的速度)或是反向的(减少前进的速度)。如果是正向推力,物体的飞行速度增

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的