八宝书库 > 文学其他电子书 > 策略思维 >

第9部分

策略思维-第9部分

小说: 策略思维 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



论的博弈是由一系列相继进行的行动组成的。查理·布朗在选择要不要踢那个橄榄球时,心里明白露西现在还没有决定要不要拿走那个球;在象棋里,白方与黑方交替行动。相反,《时代》与《新闻周刊》的行动却是同时进行的。双方不得不在毫不知晓对手的决定的情况下采取行动。等到彼此发现对方做了什么,再想做什么改变就太迟了。当然,这个星期的输家下个星期很可能竭力反扑,不过,等到那时,在这个日新月异的世界上说不定已经出现了一个完全不同的新的故事模式,开始了一场完全不同的博弈。
  这两种博弈所要用到的策略思维和行动在本质上存在天壤之别。对于第2章讨论的相继行动的博弈,每个参与者不得不向前展望,估计对手的反应,从而倒后推理,决定自己这一轮应该怎么走。这是一条线性的推理链:“假如我这么做,另一个参与者会那么做——若是那样,我会这么反击”,依此类推。
  而在同时行动的博弈里,没有一个参与者可以在自己行动之前得知另一个参与者的整个计划。在这种情况下,互动推理不是通过观察对方的策略进行,而是必须通过看穿对手的策略才能展开。要想做到这一点,单单假设自己处于对手的位置会怎么做还不够。即便你那样做了,你又能发现什么?你只会发现,你的对手也在做同样的事情,即他也在假设自己处于你的位置会怎么做。因此,每一个人不得不同时担任两个角色,一个是自己,一个是对手,从而找出双方的最佳行动方式。与一条线性的推理链不同,这是一个循环——“假如我认为他认为我认为……”。诀窍在于怎样破解这个循环。
  夏洛克·福尔摩斯(Sherlock 
  Holmes)和他的死对头、罪恶魔头莫里亚蒂(M噢riarty)教授擅长这类推理,对此我们一点都不觉得惊讶。正如福尔摩斯在《最后的问题》里告诉华生(Watson)的:“我要说的其实已经在你的脑海闪过。”他说。
  “那么我的答案大概也已经在你的脑海闪过。”我答道。
  你就和华生医生一样,大概也在揣摩福尔摩斯怎么未卜先知。听完我们的解释,我们希望你会同意这其实相当简单。
  你怎样才能看穿所有那些错综复杂而又看不见的策略呢?首先,你不要把其他参与者的未知行动视做天气那样,具有与个人无关的不确定性。上班之前,《时代》的编辑可能收听天气预报,知道今天下雨的概率是40%,他大概会利用这个信息去决定要不要带一把雨伞去上班。但《新闻
  周刊》将会采用哪个特定主题作为封面故事的概率则完全是另外一回事。
  区别在于,《时代》的编辑对《新闻周刊》有一个非常中肯的了解——另一个杂志的编辑与天气不同,他们是策略的博弈参与者,就跟《时代》的编辑自己一样。① 
  即便一个编辑不可能真的观察到另一个杂志的决定,他也可以通过另一个杂志的视角思考这个问题,尝试确定它现在一定在做什么。
  ① 
  有些人相信,自然界也是一个策略博弈的参与者,而且心肠狠毒,整天想着怎样破坏我们早已定下的计划,以从中取乐。比如,当你听说下雨的概率是40%,这意味着,有六成概率是你带了雨伞上班而老天爷又没有下雨,另有四成机会则是你忘带雨伞而老天爷偏偏下起雨来。
  在第2章,我们可以提供一个单一的、统一的原理,为相继行动的博弈确定最佳策略。这就是我们的法则1:向前展望,倒后推理。在这一章,事情不会那么简单。不过,关于同时行动必不可少的思维方式的思考可以总结为指导行动的三个简单法则。反过来,这些法则又基于两个简单概念:优势策略与均衡。与第2章一样,我们也会通过简单的例子解释这些概念和法则。
  1 .优势策略
  在棒球比赛里,假如一方已经有两个人出局,而又打出三个坏球和两个好球,那么,任何一名进攻上垒的球员都必须在下一次投球的时候跑向下一垒。这可以通过琢磨各种可能的情形得出来。在大多数情况下,攻垒球员怎么做无关紧要。假如击球手碰不到球,要么出现第四个坏球而攻垒球员成功上垒,要么出现第三个好球而这一局结束。假如投球手投出界外球,攻垒球员只消退回原先所在的垒。假如这是一个擦棒球而又被接住,那么这一局就结束了。不过,有一种情况跑动攻垒占有优势,即假如击球手将投球击到界外,那么攻垒球员就有很好的机会上垒或者得分。
  我们认为,在这种局面下,跑动攻垒就是优势策略,即某些时候它胜于其他策略,且任何时候都不会比其他策略差。一般而言,假如一个球员有某一做法,无论其他球员怎么做,这个做法都会高出一筹,那么这个球员就有一个优势策略。假如一个球员拥有这么一个策略,他的决策就会变得非常简单;他可以选择这个优势策略,完全不必担心其他对手怎样行事。因此,寻找优势策略是每一个人的首要任务。
  一旦你知道自己在找什么,你就会发现这个东西无所遁形,我们身边其实到处都是优势策略的有趣例子。比如印第安纳·琼斯(Indiana 
  Jones)在电影《印第安纳·琼斯与最后的十字军东征》(Indiana Jones and the Last 
  Crusade)的最紧张局势时所处的地位。印第安纳·琼斯、他的父亲以及纳粹分子全都聚集在安放圣杯的地方。眼看纳粹分子只差一步就要得到圣杯,琼斯父子却无论如何不愿意助封为虐。于是,纳粹分子打了琼斯父亲一枪。只有具备起死回生力量的圣杯才能救老琼斯博士的命。在这种情况下,琼斯只好引他们走向圣杯。不过,前面还有一个最后的挑战:琼斯必须在十几个杯子当中做出选择,选出耶稣基督用过的圣杯。圣杯可以使人永生不死,其他杯子却会致人于死地。纳粹头子迫不及待地拿起一个华丽的黄金杯,喝下里面的圣水,却突然倒地而死,因为他选错了,那不是圣杯。琼斯选了一个木头杯,那是一个木匠用的杯子。他一边大叫“只有一个办法可以证实”,一边将杯里的水倒出一点在圣水器上,自己先喝了下去,希望自己选中的就是生命之杯。当琼斯发现自己没搞错,立即把杯子送到他父亲那里,圣水果然治愈了致命的枪伤。
  虽然这一幕增添了紧张气氛,但在一定程度上却让我们感到难堪,因为一个像印第安纳·琼斯博士那样了不起的教授,居然会看不到他的优势策略。他本来应该先把杯子递给他父亲,没有必要自己亲身尝试。假如琼斯确实选对了杯子,那他父亲就会得救。假如他选错了杯子,那他父亲就会丧命,却至少可以保全琼斯。在将杯子递给他父亲之前自己测试一下其实毫无用处,这是因为,假如琼斯选错了杯子,那就再也没有第二次机会了——琼斯将死于致命之水,而他父亲也会死于致命枪伤。①① 
  这个例子同时指出博弈论的弱点:人们单凭行为导致的结果给行为打分,行为本身则变得无足轻重。比如,即便印第安纳·琼斯的父亲已经受了致命枪伤,琼斯可能还是不愿意为导致父亲死亡的行为承担责任,一定要亲身试饮那杯水。
  相比之下,寻找优势策略会比寻找圣杯容易一些。不妨想想英国桂冠诗人艾尔弗雷德·丁尼生爵士(Alfred,Lord 
  Tennyson)那令人耳熟能详的名句:“爱过之后失去总比从来没有爱过好。”'1'换言之,爱是一种优势策略。
  2 .封面之战
  回到《时代》与《新闻周刊》的竞争上来。假设有一个星期出了两桩大新闻:一是众议院和参议院就预算问题吵得不可开交;二是发布了一种据说对艾滋病有特效的新药。编辑们选择封面故事的时候,首要考虑的是哪一条新闻更能吸引报摊前的买主(订户则无论采用哪一条新闻做封面故事都会买这本杂志)。在报摊前的买主当中,假设30%的人对预算问题感兴趣,70%的人对艾滋病新药感兴趣。这些人只会在自己感兴趣的新闻变成封面故事的时候掏钱买杂志;假如两本杂志用了同一条新闻做封面故事,那么感兴趣的买主就会平分两组,一组买《时代》,另一组买《新闻周刊》 
  。现在,《时代》的编辑可以进行如下推理:“假如《新闻周刊》采用艾滋病新药做封面故事,那么,假如我采用预算问题,我就会得到整个‘预算问题市场’(即全体读者的30% 
  ) ,假如我采用艾滋病新药,我们两家就会平分‘艾滋病新药市场’(即我得到全体读者的35%) 
  ,因此,艾滋病新药为我带来的收入就会超过预算问题。假如《新闻周刊》采用预算问题,那么,假如我采用同样的故事,我会得到15%的读者,假如我采用艾滋病新药,就会得到70%的读者;这一次,第二方案同样会为我带来更大的收入。因此,我有一个优势策略,就是采用艾滋病新药做封面。无论我的对手选择采用上述两个新闻当中的哪一个,这一策略都会比我的其他策略更胜一筹。”
  我们可以借助一个简单的表格,更加迅速而清晰地看出这番推理的逻辑性。我们用图3…1 中的两列表示《 
  新闻周刊》的对应选择,用两行表示《时代》的对应选择。这时我们得到四个格子,每一个格子对应一组策略。格子里的数字代表《时代》的销量,用购买《时代》的读者数占全体潜在读者数的百分比显示。第一行显示的是假如《时代》选择艾滋病新药,它在《新闻周刊》选择艾滋病新药或者预算问题的两种情况下的销量。第二行显示的是假如《时代》选择预算问题,它在《新闻周刊》选择艾滋病新药或者预算问题的两种情况下的销量。比如说,在左下角或者西南方向的格子,《时代》选择预算问题,《新闻周刊》选择艾滋病新药,结果《时代》得到30%的市场。
  这个优势策略很容易看出来。第一行的两个格子无一例外都比第二朋行对应的格子占优,因为第一行的两个数字都比排在同一列下面的数字大。这是优势地位的特征。通过这个表格,你可以很快就看出这个特征是不是符合。你可以想像自己用第一行覆盖在第二行上面,然后会发现,盖住第二行的是更大的两个数字。相比之下,这个表格在阐述前面一段话的时候具有压倒语言推理的直观优势,而这种优势随着博弈的复杂程度加大而越发明显。在复杂的博弈当中,各方都有好几个策略。
  《 新闻周刊》 
  的选择艾滋病新药预算问题图3…1《时代》的销售同理,在这个博弈里,双方都有一个优势策略。为了解释这一点,我们为《新闻周刊》的销量也画了一个表格(如图3…2 
  所示)。第一列数字显示的是假如《新闻周刊》采用艾滋病新药,它在《时代》采用艾滋病新药或者预算问题的两种情况下各有多大销量。这一列的两个数字无一例外都比第二列对应的数字占优,你可以再次想像自己拿起第一列覆盖在第二列上时会发现什么。因此,艾滋病新药对《新闻周刊》来说也是优势策略。
  《 新闻周刊》 的选择艾滋病新药预算问题图3…2 
  《新闻周刊》的销售以策略观点来看,各方均有一个优势策略的博弈是最简单的一种博弈。虽然其中存在策略互动,却有一个可以预见的结局:全体参与者都会选择自己的优势策略,完全不必理会其他人会怎么做。但这一点并不会降低参与或者思考这种博弈的趣味性。比如,在百码短跑中,优势策略是能跑多快就跑多快,但许多人还是很喜欢参加或者观看这种比赛。在第1章提到的捷尔任斯基广场牢房出现的囚徒困境中,两个参与者都有一个优势策略,只不过这股压倒一切的力量最终将他们引向了一起倒霉的结局。这就提出了一个很有意思的间题:参与者怎样合作才能取得一个更好的结果?我们会在下一章进行更详细的探讨。
  有时候,某参与者有一个优势策略,其他参与者则没有。我们只要略微修改一下《时代》与《新闻周刊》的封面故事大战的例子,就可以描述这种情形。假设全体读者略偏向于选择《时代》。假如两个杂志选择同样的新闻做封面故事,喜欢这个新闻的潜在买主当中有60%的人选择《时代》,40%的人选择《新闻周刊》。现在,我们画出《时代》的销量表格(如图3…3 
  所示)。
  图3…3《时代》的销售对于《时代》,艾滋病新药仍然是优势策略,但对于《新闻周刊》,销量表格则变成下面这样(如图3…4 所示)。
  假如你拿起第一列,覆盖在第二列上,你会发现,30被一个较小的数字(28)覆盖,而12却被一个较大的数字(70 
  覆盖。没有一个策略占有压倒优势。换言之,《新闻周刊》的最佳选择不再与《时代》的策略无关。假如《时代》选择艾滋病新药,《新闻周刊》选择预算问题就能得到更好的销量,反之亦然。对于《新闻周刊》,得到整个预算问题市场总比得到一个较小份额的艾滋病新药市场要好,虽然整个艾滋病新药市场比预算问题市场要大。
  图3…4《新闻周刊》的销售《新闻周刊》的编辑们不会知道《时代 
  的编辑们将会选择什么,不过他们可以分析出来。因为《时代》有一个优势策略,那一定就是他们的选择。因此,《新闻周刊 
  的编辑们可以很有把握地假定《时代》已经选了艾滋病新药,并据此选择自己的最佳策略,即预算问题。由此可见,只有一方拥有优势策略的博弈其实也非常简单。拥有优势策略的一方将采用其优势策略,另一方则针对这个策略采用自己的最佳策略。
  现在,既然我们已经介绍了优势策略的概念,就有必要强调两点特征,这两点特征可用来确定什么不是优势策略。人们很容易就会弄糊涂,不知道优势策略的优势究竟是对什么而言的。
  1981年,伦纳德·西尔克(L俄onard 
  Silk)在撰写有关国会对《经济复苏税法》争论的

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的